Classification of High Resolution Optical and Sar Fusion Image Using Fuzzy Knowledge and Object-oriented Paradigm
نویسندگان
چکیده
The fusion image of IKONOS optical data and COSMO-SkyMed SAR image is used as the classifier inputs for land cover classification under an object-oriented paradigm. Firstly, Frost filter is selected to reduce speckle noises of SAR image. Three popular methods, including IHS, PCA and wavelet transform, are applied to fuse high resolution optical and SAR images. Comparing with other fusion methods, wavelet transform based fusion scheme is used for classification. Fuzzy knowledge is established based on the spectral, spatial and texture features derived from manual interpretation and expert knowledge. Finally, this proposed approach is compared with other traditional classification methods. * Corresponding author
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملClassification from Airborne Sar Data Enhanced by Optical Image Using an Object-oriented Approach
Classification from Synthetic aperture radar(SAR) is known to be difficult because of the speckle and variation in scattering coefficient with incidence angle, especially for high resolution airborne SAR. In western China, most areas are cloud cover perennially, which hinders acquisition of optical images. Airborne SAR data will be a good choice for big scale mapping purpose. To make effective ...
متن کاملChange Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images
The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010